If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12d^2+4d-12=0
a = 12; b = 4; c = -12;
Δ = b2-4ac
Δ = 42-4·12·(-12)
Δ = 592
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{592}=\sqrt{16*37}=\sqrt{16}*\sqrt{37}=4\sqrt{37}$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{37}}{2*12}=\frac{-4-4\sqrt{37}}{24} $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{37}}{2*12}=\frac{-4+4\sqrt{37}}{24} $
| 50+10g=50+10g | | 4y/1-3y+3/y-1=0 | | X+2+2×+3=4x | | 4^x+7=71 | | 6^3x=4 | | 50+10g=70+8g | | 4/7x-2=1/7x+4 | | 50+10g=50+8g | | 5y+y-y-y-3y=6 | | 10×12=x+5 | | 4x2+24+7=-3 | | 235.5=1/3*3.14x^2*5 | | 50+8g=60+8g | | 4x2-24x+-7=-3 | | 50+20=60+8g | | A-8a+7a+3a=19 | | -27+21y=2y+21 | | 50+50g=60+8g | | 109.9=3.14x^2*7/3 | | 6x-69=13x+64 | | 3x+4(2x-1)=6x+8x-10 | | 5a+a-5a+a=20 | | 7*p=91 | | 2(x+2)^2-4=28 | | 36=4*r | | -10=k/3+1 | | 15w-12w-3w+4w=20 | | x+5/8=7 | | 12h-2h+2h-4h+h=9 | | 3(11x=3)-24 | | 12+x=81 | | 1/6k+15=25 |